Nucleus Globus Pallidus and Its Relevance in Movement Disorder Surgery

Authors

  • Raúl José Macías González
  • María José Reboiras Ucero
  • María Teresa Solomon Cardona Dr.en Ciencias Médicas. Especialista de Segundo Grado en Neurocirugía. Profesora Titular. Investigadora Auxiliar. Presidente de la sección de Neurooncología de la Sociedad Cubana de Neurología y Neurocirugía. Servicio de Neurocirugía. Clínica Internacional de Restauración Neurológica (CIREN), La Habana, Cuba.

Keywords:

globus pallidus, basal ganglia, functional neurosurgery, movement disorders, Parkinson's disease, pallidotomy

Abstract

Introduction: The globus pallidus nucleus is a structure part of the basal ganglia and is involved in carrying out movements.

Objective: To substantiate the reasons why the globus pallidus nucleus is selected as a surgical target for some diseases that present with movement disorders.

Evidence acquisition: A bibliographic review (UptoDate, NCBI, Pubmed, Scielo and EBSCO) of more than 35 articles in Spanish and English related to globus pallidus nucleus was carried out, including anatomical nomenclatures, texts and atlases describing it, its structural organization, normal and pathological functioning and implications in the practice of Functional Neurosurgery. Most were published from 2016 to date.

Results: Anatomically, globus pallidus is considered as a structure that belongs to the so-called basal ganglia together with the caudate, putamen, substantia nigra (reticulate and compact parts) and the subthalamic nucleus. An internal medullary lamina divides it into the external globus pallidus and the internal globus pallidus. By taking these two portions into account, the designed functional models of the basal ganglia give it a dual role in the control of movement. The internal portion (internal globus pallidus) is justified as a surgical target for both hypokinetic and hyperkinetic movement disorders.

Conclusions: The anatomical and functional connections of both portions of the globus pallidus and their role in the direct and indirect pathways of movement control, as well as in the pathophysiology characterized by an environment with altered dopaminergic neurotransmission, justify its use as a surgical target in some diseases with movement disorders, by modifying the influence of these pathways on the activity of the motor thalamus.

Downloads

Download data is not yet available.

Author Biography

María Teresa Solomon Cardona, Dr.en Ciencias Médicas. Especialista de Segundo Grado en Neurocirugía. Profesora Titular. Investigadora Auxiliar. Presidente de la sección de Neurooncología de la Sociedad Cubana de Neurología y Neurocirugía. Servicio de Neurocirugía. Clínica Internacional de Restauración Neurológica (CIREN), La Habana, Cuba.

Especialidad: Neurocirugìa Centro de trabajo: CIREN Grado cientìfico: Doctor en Ciencias Categorìa docente: Profesor Titular

References

1. Nieuwenhuys R, Voogd J, Van Huijzen. El Sistema Nervioso Central Humano. Tomo 2. España. Editorial Panamericana. 2008

2. Gardner, Gray, O’rahilly. Anatomía de Gardner. Quinta edición. México. Editorial Interamericana. 2010

3. Fortunato J, Sierra I, Caicedo C, Mora J, Tramontini C. Anatomia básica de los ganglios basales. Rev.Medica.Sanitas 2019; 22 (2): 66-71, 2019

4. Valdés Martínez Y, Rubal Lorenzo N, Bulies De Armas S, Otero Baña Y, Araujo Sosa R. Núcleos Basales: Diferentes definiciones y divisiones anatómicas y funcionales. Tercer Congreso virtual de Ciencias Morfológicas. Tercera Jornada Científica de la Cátedra Santiago Ramón y Cajal. MORFOVIRTUAL 2016

5. rothon.ineurodb.org[Internet] AANS: The Rothon Collection; [cited 2020 Nov 25]. Available from: https://www.nref.org/education/The-Rhoton-Collection

6. Spiegel EA, Wycis HT, Marks M, Lee AS. Stereotaxic apparatus for operations on the human brain. Science 1947 Oct 10;106(2754):349-50. Citado por: Trifiletti DM, Ruiz-Garcia H, Quinones-Hinojosa A, Ramakrishna R, Sheehan JP. The evolution of stereotactic radiosurgery in neurosurgical practice. J Neurooncol. 2021

Feb;151(3):451-459. doi: 10.1007/s11060-020-03392-0.

7. Meyers R. The modification of alternating tremors, rigidity and festination by surgery of the basal ganglia. Res Publ Ass Res Nerv Ment Dis 1942; 21:602-65. Citado por: Abel T.J., Walch T., Howard M.A. Russell Meyers (1905–1999): pioneer of functional and ultrasonic neurosurgery. Journal of Neurosurgery JNS 2016; 125(6), 1589-1595. Revisado Mar 15, 2021. (Internet) https://thejns.org/view/journals/j-neurosurg/125/6/article-p1589.xml

8. Lozano A, Gildenberg Ph, Tasker R. (Eds) Textbook of Stereotactic and Functional Neurosurgery. 2nd Edition. Volume 1. Springer-Verlag Berlin Heidelberg, Germany 2009.

9. Cif L, Hariz M. Seventy years of pallidotomy for movement disorders. Movement disorders sept 26,2017; 32, 10, p.1498-1498. https://doi.org/10.1002/mds.27054

10. Obeso JA, Rodríguez-Oroz MC, Rodríguez M, Lanciego JL, Artieda J, Gonzalo N, et al. Pathophysiology of the basal ganglia in Parkinson’s disease Trends Neurosci 2000 Oct;23(10 Suppl): S8-19. Citado por: Pamukcu A, Cui Q, Xenias HS, Berceau BL, Augustine EC, Fan I, et al. Parvalbumin and Npas Pallidal Neurons Have Distinct Circuit Topology and Function. JNeurosci 2020 Oct 7;40(41):7855-7876. doi: 10.1523/JNEUROSCI.0361-20.2020.

11. Carvalhal Ribas E, Yağmurlu K, de Oliveira E, Carvalhal Ribas G, Rhoton Jr A. Microsurgical anatomy of the central core of the brain. Journal of Neurosurgery 2018, Sep; 129, 3, 752–769. DOI: https://doi.org/10.3171/2017.5.JNS162897

12. Ferrier D. (1887). The Functions of the Brain. London: Smith, Elder & Co. [Google Scholar] Citado por: Milardi D., Quartarone A., Bramanti A., Anastasi G., Bertino S., Basile G.B., et al The Cortico-Basal Ganglia-Cerebellar Network: Past, Present and Future Perspectives. Front Syst Neurosci 2019; 13: 61. doi: 10.3389/fnsys.2019.00061

13. Netter, F.H. Atlas de Anatomía Humana. Sexta Edición. 2015 Elsevier Masson, España, S.L.U

14. Parent A. Extrinsic connections of the Basal Ganglia. TINS, 1990 Jul;13(7):254-8. doi: 10.1016/0166-2236(90)90105-j.

15. Saga Y, Hoshi E, Tremblay L. Roles of Multiple Globus Pallidus Territories of Monkeys and Humans in Motivation, Cognition and Action: An Anatomical, Physiological and Pathophysiological Review. Front Neuroanat. 2017 Apr 10; 11:30. doi: 10.3389/fnana.2017.00030.

16. Penney JB, Young AB. Speculations on the functional anatomy of basal ganglia disorders. Annu Rev Neurosci 1983; 6:73-94. doi: 10.1146/annurev.ne.06.030183.000445.

17. Albin, R. L., Young, A. B., Penney, J. B. The functional anatomy of basal ganglia disorders. Trends Neurosci 1989 Oct;12(10):366-75. doi: 10.1016/0166-2236(89)90074-x.

18. Crossman AR. Primate models of dyskinesia: The experimental approach to the study of basal ganglia-related involuntary movement disorders. Neuroscience 1987 Apr;21(1):1-40. doi: 10.1016/0306-4522(87)90322-8.

19. DeLong MR. Primate models of movement disorders of basal ganglia origin. Trends Neurosci 1990 Jul;13(7):281-5. doi: 10.1016/0166-2236(90)90110-v.

20. Nambu A, Tokuno H, Takada M. Functional significance of the cortico-subthalamopallidal “hyperdirect” pathway. Neurosci Res 2002 Jun;43(2):111-7. doi: 10.1016/s0168-0102(02)00027-5.

21. Lanciego JL, Luquin N, Obeso JA. Functional Neuroanatomy of the Basal Ganglia. Cold Spring Harb Perspect Med. 2012 Dec; 2(12): a009621. doi: 10.1101/cshperspect. a009621. Citado por: Boonstra JT, Michielse S, Temel Y, Hoogland G, Jahanshahi A. Neuroimaging Detectable Differences between Parkinson's Disease Motor Subtypes: A Systematic Review. Mov Disord Clin Pract 2020 Nov 6;8(2):175-192. doi: 10.1002/mdc3.13107.

22. Ospina-García N, Pérez-Lohman C, Vargas-Jaramillo JD, Cervantes-Arriaga A, Rodríguez-Violante M. Ganglios basales y Conducta. Rev Mex Neuroci 2017; 18 (6): 74-86 http://previous.revmexneurociencia.com/wp-ontent/uploads/2017/11/RevMexNeuroci_2017_186-74-86-R.pdf

23. Fuyuki Karube, Susumu Takahashi, Kenta Kobayashi, Fumino Fujiyama. Motor cortex can directly drive the globus pallidus neurons in a projection neuron type-dependent manner in the rat. eLife 2019;8: e49511 DOI: 10.7554/eLife.49511

24. Djulejić V, Marinković S, Georgievski B, Stijak L, Aksić M, Puškaš L, et al. Clinical significance of blood supply to the internal capsule and basal ganglia. J Clin Neurosci 2016 Mar; 25:19-26. doi: 10.1016/j.jocn.2015.04.034.

25. Arredondo K, Zeron R, Rodriguez M, Cervantes A. Breve recorrido histórico de la enfermedad de Parkinson a 200 años de su descripción. Gac Med Mex 2018;154(6):719-726. doi: 10.24875/GMM.18003702

26. Niranjan A, Lunsford LD, Richardson RM (eds): Current Concepts in Movement Disorder Management. Prog Neurol Surg. Basel, Karger, 2018; 33: 41-49. (DOI:10.1159/000481113)

27. Wichmann T, DeLong MR. Deep Brain Stimulation for Movement Disorders of Basal Ganglia Origin: Restoring Function or Functionality. Neurotherapeutics 2016 Apr; 13(2): 264–283. DOI: 10.1007/s13311-016-0426-6.

28. Wichmann T. Models of Parkinson's disease revisited. Nature 2018 May;557(7704):169-170. doi: 10.1038/d41586-018-02589-8. PMID: 29730674

29. Crompe B.d.l., Aristieta A., Leblois A. The globus pallidus orchestrates abnormal network dynamics in a model of Parkinsonism. Nat Commun 2020; 11, 1570. (Internet) https://doi.org/10.1038/s41467-020-15352-3

30. Ospina-García N., Cervantes-Arriaga A., Rodríguez-Violante M. Etiología, fenomenología, clasificación y tratamiento de la distonía. Revista Mexicana de Neurociencia. julio-agosto, 2018; 19 (4):94-107 (Internet) https://www.medigraphic.com/pdfs/revmexneu/rmn-2018/rmn184j.pdf

31. Acevedo JC, Salazar LM. Tratamiento de distonía estimulación cerebral profunda. Univ Méd. 2016;57(1):66-82. doi: http://dx.doi.org/10.11144/Javeriana.umed57-1.tdec

32. Contarino MF, Van Den Dool J, Balash Y, Bhatia K, Giladi N, Koelman JH, et al Clinical Practice: Evidence-Based Recommendations for the Treatment of Cervical Dystonia with Botulinum Toxin Front Neurol. 2017 Feb 24;8:35. doi: 10.3389/fneur.2017.00035. eCollection 2017. PMID: 28286494

33. Tsuboi T, Lemos Melo J, Patel B, Foote KD, Okun MS, Ramirez-Zamora A. Parkinson's disease motor subtypes and bilateral GPi deep brain stimulation: One-year outcomes. Parkisonism & Related Disorders 2020 Jun; 75:7-13. doi: 10.1016/j.parkreldis.2020.05.004.

34. Ramirez-Zamora A, Ostrem JL Globus Pallidus Interna or Subthalamic Nucleus Deep Brain Stimulation for Parkinson Disease. JAMA Neurol 2018;75(3):367-372. doi:10.1001/jamaneurol.2017.4321

35. Marín-Medina DS, Quintero-Moreno JF, Valencia-Vásquez A, Duque-Salazar C, Gil-Restrepo AF, Castaño-Montoya JP, et al. Estimulación cerebral profunda en enfermedad de Parkinson. Iatreia. 2018 Jul-Sept;31(3): 262-273. DOI 10.17533/udea.iatreia.v31n3a04.

36. Bernal Pacheco O. Surgical management for dystonia. Acta Neurol Colomb 2017;33 supl.1: S38-47. http://www.scielo.org.co/pdf/anco/v33s1/0120-8748-anco-33-s1-38.pdf

37. Rodríguez González M, Da Cuña Carrera I. Estimulación cerebral profunda del globo pálido interno en pacientes con síndrome de Gilles de la Tourette. Acta Neurol Colomb. 2018; 34(2): 146-155 https://doi.org/10.22379/24224022204

Published

2022-11-01

How to Cite

1.
Macías González RJ, Reboiras Ucero MJ, Solomon Cardona MT. Nucleus Globus Pallidus and Its Relevance in Movement Disorder Surgery. Rev Cubana Neurol Neurocir [Internet]. 2022 Nov. 1 [cited 2025 Jul. 12];12(2). Available from: https://revneuro.sld.cu/index.php/neu/article/view/444