Intraoperative ultrasound for detecting intracranial tumors
Keywords:
Karnofski scale, Neurosurgery, Tumor resection, Intracranial tumors, Intraoperative ultrasoundAbstract
OBJECTIVE: To characterize the main variables of intracranial tumors through intraoperative ultrasound.
METHODS: Thirty-eight patients, who underwent multislice computed tomography of the skull, magnetic resonance imaging with tractography, prior to surgery, were included. The intraoperative ultrasound equipment used was an Aloka alpha 5 Pro-Sound. The type and topography of the tumor, the characteristics of the ultrasound, the degree of resection and the evolution were studied.
RESULTS: The age range was between 19 years and 74 years. There was a predominance of lesions with high degree of malignancy (57.9 %). Glioblastoma multiform prevailed with 15 patients (39.5 %), followed by metastases and benign tumors with 7 cases each. All lesions were observed by ultrasound and in 34 cases (89.5 %) the edges were well defined. Total tumor resection was performed in 34 patients, 17 of them with localization in eloquent areas. The four partial surgeries were two lesions in motor areas, a bi-frontal butterfly wing glioma and a giant olfactory groove meningioma. Karnofski scale at 30 days was greater than preoperative in 35 cases (92.1 %). It remained the same in one patient and in two cases was lower.
CONCLUSIONS: The use of intraoperative ultrasound allowed to characterize all lesions in real time. It was useful to plan the corticotomy and verify the level of the resection at all times. The clinical status and level of validity, according to Karnofski scale, improved in the majority of patients in the first 30 days.
Downloads
References
1. Ostrom Q, Gittleman H, Fulop J, Liu M, Blanda R, Kromer C, et al. CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2008-2012. Neuro Oncol. 2015;17(s4):iv1-iv66.
2. Ministerio de Salud Pública. Anuario Estadístico de Cuba 2015 [Internet]. 44ª. ed. La Habana: Dirección Nacional de Registros Médicos y Estadísticas de Salud; 2016 [citado: 26 de enero de 2018]. Disponible en: http://files.sld.cu/dne/files/2016/04/Anuario_2015_electronico-1.pdf
3. Kreth FW, Thon N, Simon M, Westphal M, Schackert G, Nikkhah G, et al. Gross total but not incomplete resection of glioblastoma prolongs survival in the era of radiochemotherapy. Ann Oncol. 2013;24(12):3117-23.
4. Preuss M, Werner P, Barthel H, Nestler U, Christiansen H, Hirsch FW, et al. Integrated PET/MRI for planning navigated biopsies in pediatric brain tumors. Childs Nerv Syst. 2014;30:1399-403.
5. Martínez Tamborini N, Báez A, Casas Parera I, Halfon MJ, Báez M, Blumenkrantz Y. Tumores gliales del sistema nervioso: planificación y porcentaje de resección. Neurol Arg. 2013;5(2):129-32.
6. Stummer W, Van den Bent MJ, Westphal M. Cytoreductive surgery of glioblastoma as the key to successful adjuvant therapies: New arguments in an old discussion. Acta Neurochir (Wien). 2011;153:1211-18.
7. Terret C, Albrand G, Moncenix G, Droz JP. Karnofsky Performance Scale (KPS) or Physical Performance Test (PPT)? That is the question. Crit Rev Oncol Hematol. 2011;77:142-47.
8. Alonso D, Matallanas M, Riveros Pérez A, Pérez Payoa M, Blanco S. Factores pronósticos y predictivos en gliomas de alto grado. Experiencia en nuestro centro. Neurocirugía [Internet]. 2017 [citado: 26 de enero de 2018];28(6):276-83. Disponible en: https://www.sciencedirect.com/science/article/pii /S113014731730088X
9. Martínez F, Salle Moragues R, Bertullo G. Utilidad de la estimulación intraoperatoria en cirugía de procesos expansivos intracraneanos bajo anestesia general. Rev Urug Med Int. 2017;2(1):58-63.
10. Orozco Ramírez SM, Hernández Sánchez BM, Miranda González, De Alba Salmerón AL. Técnica anestésica paciente dormido-despierto para craneotomía de tumores en áreas funcionales. Reporte de dos casos. Rev Mex Anest. 2017;40(4):312-9.
11. Ma J, Su S, Yue S, Zhao Y, Li Y, Chen X, et al. Preoperative Visualization of Cranial Nerves in Skull Base Tumor Surgery Using Diffusion Tensor Imaging Technology. Turk Neurosurg. 2016;26(6):805-12.
12. Vidal Sicarta S, Valdés Olmos R, Nieweg OE, Faccini R, Grootendorst MR, Wester HJ. De la imagen intervencionista a la guía intraoperatoria: nuevas perspectivas combinando herramientas avanzadas y navegación con la cirugía radioguiada. Rev Esp Med Nucl Imagen Mol. 2018;37(1):28-40.
13. Sabet H, Stack BC, Nagarkar VV. A hand-held, intraoperative positron imaging probe for surgical applications. IEEE Trans Nucl Sci. 2015;62(5):1927-34. doi: 10.1109/TNS.2015.2446434
14. Gao Y, Han Y, Nan G, Hu M, Zhou X, Hu X. Value of CT-MRI fusion in iodine-125 brachytherapy for high-grade glioma. Oncotarget. 2017;8(68):112883-92.
15. Quick-Weller J, Lescher S, Forster MT. Combination of 5-ALA and iMRI in re-resection of recurrent glioblastoma. Br J Neurosurg. 2016;30:313-7.
16. López Piloto O, Salva Camaño S, González González J, Cruz Hernández TM, Martínez Suarez E, López Arbolay O, et al. Cirugía radio-fluoro guiada en los gliomas de alto grado Radio-fluoro guided surgery in high grade gliomas. Rev Chil Neurocir. 2015;41:174-9.
17. French L A, Wild JJ, Neal D. Detection of cerebral tumors by ultrasonic pulses. Cancer. 1950;3:705-8.
18. Backlund E, Levander B, Greitz T. Stereotactic exploration of brain tumors by ultrasound. Acta Radiológica. 1976;16:117-22.
19. Rubin JM, Mirfakhraee M, Dohrmann GJ, Brown F. Intraoperative ultrasound examination of the brain. Radiology. 1980;137:831-2.
20. Hwang M, Riggs BJ, Katz J, Seyfert D, Northington F, Shenandoah R, et al. Advanced Pediatric Neurosonography Techniques: Contrast-Enhanced Ultrasonography, Elastography and Beyond. J Neuroimaging. 2018 Mar;28(2):150-7. doi: 10.1111/jon.12492
21. Poggio GA, Mariano J, Gopar LA, Ucar ME. La ecografía primero: ¿Por qué, cómo y cuándo? Rev argent radiol [Internet]. 2017 Sept. [citado: 30 de enero de 2018];81(3):192-203. Disponible en: http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1852-99922017000300003&lng= es.
22. Ganau M, Syrmos N, Martin AR, Jiang F, Michael G. Fehlings. Intraoperative ultrasound in spine surgery: history, current applications, future developments. Quant Imaging Med Surg. 2018;8(3):261-7.
23. Coburger J, König RW. Intraoperative Findings in Brain Tumor Surgery. In: Prada F, Solbiati L, Martegani A, DiMeco F (eds). Intraoperative Ultrasound (IOUS) in Neurosurgery [Internet]. Cham: Springer International Publishing Switzerland; 2016 [citado: 30 de enero de 2018]. p. 41-58. Disponible en: https://link.springer.com/book/10.1007/978-3-319-25268-1
24. Van Leyen K, Klotzsch C, Harrer JU. Brain tumor imaging with transcranial sonography: state of the art and review of the literature. Ultraschall Med. 2011;32:572-81.
25. El Beltagy MA, Aggag M, Kamal M. Role of intraoperative ultrasound in resection of pediatric brain tumors. Childs Nerv Syst. 2010;26:1189-93.
26. Mair R, Heald J, Poeata J, Ivanov M. A practical grading system of ultrasonographic visibility for intracerebral lesions. Acta Neurochir. 2013;155(12):2293-98. doi: 10.1007/s00701-013-1868-9
27. Yusniel SR, Figueredo J, López Inguanzo J, Ontivero M, Gongora D, Iglesias Fuster J, et al. Co-registration methods for 2D ultrasound and nuclear magnetic resonance images. Front Neuroinform. Conference Abstract: Neuroinformatics. 2013. doi: 10.3389/conf.fninf.2013.09.00121
28. World Medical Associations Declaration of Helsinki: ethical principles for medical research involving human subjects. J Am Coll Dent [Internet]. 2014 [citado: 10 de febrero de 2018];81(3):14-8. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/25951678
29. Mehta M, Vogelbaum MA, Chang S. Neoplasms of the central nervous system. In: De Vita VT Jr, Lawrence TS, Rosenberg SA: Cancer: Principles and Practice of Oncology. 9th ed. Philadelphia, Pa: Lippincott Williams & Wilkins; 2011. p. 1700-49.
30. Amrawy F, Othman A, Adkins C, Helmy A, Nounou M. Tailored nanocarriers and bioconjugates for combating glioblastoma and other brain tumors. J Cancer Metastasis Treat. 2016;2(113):112-22. doi:10.20517/2394-4722.2015.78
31. Verger F, Vargas M, Valduvieco I. Localizaciones tumorales específicas. Diagnóstico y tratamiento. En: Calvo FA, Biete A, Pedraza V. Oncología Radioterápica: principios, métodos, gestión y práctica clínica. 1ª ed. Madrid: Arán; 2010. p. 589-1234.
32. Vernooi MW, Ikram MA, Tanghe HL, Vincent AJ, Hofman A, Krestin GP, et al. Incidental findings on brain MRI in the general population. N Engl J Med. 2007;357:1821-8.
33. Nayak L, Lee EQ, Wen PY. Epidemiology of brain metastases. Current oncology reports. Curr Oncol Rep. 2012;14:48-54.
34. Tabatabai G, Koch M, Roggia C, Ebert J, Garbe C, Meier F, et al. Interdisciplinary management of CNS metastasis and neoplastic meningitis: recent developments and future perspectives. J Cancer Metastasis Treat. 2016;2:163-75. doi:10.20517/2394-4722.2016.01
35. Chi Ramírez D, Forteza Sáez M, Galán Álvarez Y, Chon Rivas I, Ortiz Reyes RM, Caballero García J. Mortalidad por metástasis encefálica (La Habana, 2006-2008). Rev Cubana Neurol Neurocir [Internet]. 2014 [citado: 12 de enero de 2018];4(2):109-16. Disponible en: http://revneuro.sld.cu/index.php/ neu/article/viewFile/134/pdf
36. López Hernández F, Hernández Palazón J, Reus Pintado M, Garrido Gómez JI, Martínez Lage JF. Craneotomía guiada por ultrasonografía bidimensional para exéresis de tumor cerebral supratentorial. Neurocirugía. 2008;19:530-6.
37. Senft C, Bink A, Franz K, Vatter H, Gasser T, Seifert V. Intraoperative MRI guidance and extent of resection in glioma surgery: a randomised, controlled trial. Lancet Oncol. 2011;12(11):997-1003. doi: 10.1016/S1470-2045(11)70196-6
38. Díez Valle R, Tejada Solis S, Idoate Gastearena MA, García de Eulate R, Domínguez Echávarri P, Aristu Mendiroz J. Surgery guided by 5-aminolevulinic fluorescence in glioblastoma: volumetric analysis of extent of resection in single-center experience. J Neurooncol. 2011;102:105-13.
39. Sanai N, Polley MY, McDermott MW, Parsa AT, Berger MS. An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg. 2011;115:3-8.
40. Sanai N, Berger MS. Glioma extent of resection and its impact on patient outcome. Neurosurgery. 2008;62:753-66.
41. D'amico RS, Kennedy BC, Bruce JN. Neurosurgical oncology: advances in operative technologies and adjuncts. Neurooncol. 2014;119:451-63.
42. Picarelli H, de Lima Oliveira M, Bor-Seng-Shu E, Carvalhal Ribas ES, Maria Santos E, Jacobsen Teixeira M. Intraoperative ultrasonography for presumed brain metastases: a case series study. Arq Neuropsiquiatr. 2012;70(10):793-8.
43. Moiyadi AV, Shetty PM, Mahajan A, Udare A, Sridhar E. Usefulness of three-dimensional navigable intraoperative ultrasound in resection of brain tumors with a special emphasis on malignant gliomas. Acta Neurochir (Wien). 2013;155(12):2217-25. doi: 10.1007/s00701-013-1881-z
44. Sweeney JF, Smith H, Taplin A, Perloff E, Adamo MA. Efficacy of intraoperative ultrasonography in neurosurgical tumor resection. Journal of Neurosurgery [Internet]. 2018 [citado: 13 de febrero de 2018];21(5):504-10. Disponible en: http://thejns.org/doi/abs/10.3171/2017.11.PEDS17473
45. Mari AR, Shah I, Imran M, Ashraf J. Role of intraoperative ultrasound in achieving complete resection of intra-axial solid brain tumours. J Pak Med Assoc. 2014;64(12):1343-7.
46. García Feliciano F, Vaca Ruíz MA, Gaona Valle LS. Pronóstico funcional y días de estancia intrahospitalaria en pacientes sometidos a resección de lesiones supratentoriales, en áreas cerebrales elocuentes, con técnica de craneotomía en paciente despierto versus craneotomía convencional [tesis que para obtener el diploma de posgrado en la especialidad de Neurocirugía en Internet]. Toluca: Universidad Autónoma del Estado de México; 2014 [citado 20 de enero de 2018]. Disponible en: http://ri.uaemex.mx/handle/20.500.11799/59197
47. Ammirati M, Vick N, Liao Y, Ciric I, Mikhael M. Effect of extent of surgical resection on survival and quality of life in patients with supratentorial glioblastomas and anaplastic astrocytoma's. Neurosurgery. 1987;21(2):201-6.