Electroencephalogram artifact correction application for anesthetic depth monitoring

Authors

  • Yissel Rodríguez Aldana
  • Tahimy González Rubio
  • Enrique Marañón Reyes
  • Arquímedes Montoya Pedrón
  • Frank Sanabria Macías

Keywords:

Electroencephalogram, Anesthetic depth assessment, Empirical modes decomposition

Abstract

OBJECTIVE: To propose a method based on empirical mode decomposition (EMD) algorithm for the correction of eye and cardiac artifacts presents in the electroencephalogram (EEG).

METHODS: For the artifact correction partial reconstruction of signal were apply the discarding all those components that may contain artifact information. After the proposed correction method is evaluated using artificially contaminated EEG signals. Similitude and correlation criteria were applied between the method outcomes and the original EEG. Finally correction method was incorporated into an anesthesia monitoring system. To evaluate the system outcomes enhancement, these were compares before and after apply the artifact correction.

RESULTS: EEG artifact correction method outcomes preserve overall analyzed records a correlation of 89.7 % and medium similitude value of 0.75 compared the original EEG. The anesthesia monitoring system shows an enhancement of 27.4 % after apply artifact correction. Demonstrating, the superior performance of the anesthetic monitoring proposed methods after artifacts correction.

CONCLUSIONS: The EEG has become one of the most used method in the surgical practice for to quantify the anesthetic depth. But the accuracy of diagnosis made from this signal can be compromised by the appearance of artifacts in the EEG record. Ocular and cardiac artifacts are most frequent and problematic.

Downloads

Download data is not yet available.

References

1. Parain D, Szurhaj Z. Surveillance EEG continue de l’ adulte en unité de soins. Neurophysiol Clin. 2015 Mar;45(1):39–46. doi: 10.1016/j.neucli.2014.11.003.

2. Niedermeyer E, Da Silva FL. Electroencephalography: basic principles, clinical applications, and related field. Lippincott: Williams & Wilkins; 2005.

3. Nakamura M, Shibasaki H. Elimination of EKG artifacts from EEG records: a new method of non–cephalic referential EEG recording. Electroencephalogr Clin Neurophysiol. 1987 Jan;66(1):89–92.

4. Gotman P, Gloor P. Automatic recognition and quantification of interictal epileptic activity in the human scalp EEG. Electroencephalogr Clin Neurophysiol. 1976;41(5):513–29.

5. Carlson DE, Vogelstein JT, Qisong Wu, Wenzhao Lian, Mingyuan Zhou, Stoetzner CR, et al. Multichannel electrophysiological spike sorting via joint dictionary learning and mixture modeling. Computer IEEE Trans Biomed Eng. 2014 Jan;61(1):41–54. doi: 10.1109/TBME.2013.2275751.

6. Romero S, Mañanas MA, Barbanoj M. Estudio comparativo de técnicas automáticas para el filtrado ocular en señales EEG simuladas. XXVIII Jornadas de Automática. [citado: 23.3.2015] 2007. Disponible en: http://www.ceautomatica.es/old/actividades/jornadas/XXVIII/documentos/1801–JA07_SRL_vdef.pdf

7. Huang HP, Liu YH, Wang CP, Huang TH. Automatic artifact removal in EEG using independent component analysis and one–class classification strategy. J. Neurosci. Neuroeng. 2013;2(2):73–8.

8. Ramírez–Castro RI, Montejo LA. Trasformada de Hilbert, descomposición modal empírica y sus aplicaciones en el análisis de vibraciones libres. Revista Internacional de Desastres Naturales, Accidentes e Infraestructura Civil [citado: 23.3.2015] 2011;11(2). Disponible en: http://academic.uprm.edu/laccei/index.php/RIDNAIC/article/view/298/326

9. Rutkowski TM, Mandic DP, Cichocki A, Przybyzewski AW. EMD approach to multichannel EEG data the amplitude and phase components clustering analysis. J Circuit Syst Comp. 2010;19(1):215–29. DOI: 10.1142/S0218126610006037

10. Karagiannis A, Constantinou P, Vouyioukas D. Biomedical Time Series Processing and Analysis Methods: The Case of Empirical Mode Decomposition, Advanced Biomedical Engineering, Gargiulo G., ed. InTech [citado: 23.3.2015] 2011. DOI: 10.5772/20906. Disponible en: http://www.intechopen.com/books/advanced–biomedical–engineering/biomedical–time–series–processing–and–analysis–methods–the–case–of–empirical–mode–decomposition

11. Park C, Looney D, Hulle MM, Mandic DP. Neurocomputing The complex local mean decomposition. Neurocomputing. 2011;74:867–75.

12. Serrano CA. Análisis de la variabilidad de intervalos de tiempo del ECG. Catalunya: Universitat Politécnica; [citado: 23.3.2015] 2002. Disponible en: http://hdl.handle.net/10803/6321

Published

2015-05-18

How to Cite

1.
Rodríguez Aldana Y, González Rubio T, Marañón Reyes E, Montoya Pedrón A, Sanabria Macías F. Electroencephalogram artifact correction application for anesthetic depth monitoring. Rev Cubana Neurol Neurocir [Internet]. 2015 May 18 [cited 2025 Aug. 1];5(1):S9–S14. Available from: https://revneuro.sld.cu/index.php/neu/article/view/179