Hipótesis de lateralización a partir de la asociación entre la topografía del infarto cerebral y la disfunción autonómica cardiaca luego de un ictus isquémico

Autores/as

Palabras clave:

regulación autonómica cardíaca, infarto cerebral, disfunción autonómica cardíaca, variabilidad de la frecuencia cardíaca, ínsula, lateralización

Resumen

OBJETIVO: Describir la asociación entre la topografía del infarto cerebral y la aparición de disfunción autonómica cardíaca después de un ictus isquémico.

ADQUISICIÓN DE LA EVIDENCIA: Se realizó una búsqueda bibliográfica en la base de datos Medline entre 2014 y 2018, con los términos en inglés: autonomic heart regulation o autonomic nervous system, ischemic stroke o cerebral infarction, cardiac autonomic dysfunction o heart rate variability o HRV, hypothesis of lateralization, insula, y en español. Se encontraron 48 artículos originales y dos revisiones sistemáticas. De ellos un estudio sobre las bases neuroanatómicas y fisiológicas del control autonómico cardiovascular, tres sobre evaluación de la variabilidad de la frecuencia cardíaca, y 46 acerca de los efectos del infarto cerebral y su topografía en la función autonómica cardíaca

RESULTADOS:  La corteza insular se considera un centro de integración autonómica cardiovascular. Valores significativamente más altos de la relación de frecuencia baja/frecuencia alta se han encontrado en pacientes con infarto insular derecho. El papel prominente de la ínsula derecha en el control parasimpático de la función cardíaca explica por qué el infarto cerebral de esta región puede conducir a un desequilibrio autonómico y una regulación positiva de la función simpática.

CONCLUSIONES: La topografía del infarto cerebral se asocia con la disfunción autonómica cardíaca luego de un ictus isquémico. El infarto insular es el principal responsable de la mayoría de los disturbios autonómicos cardiovasculares provocados por un ictus isquémico. Los hallazgos sobre la lateralización hemisférica para el control autonómico cardiovascular son contradictorios. No obstante, la mayoría de los estudios coinciden en que las lesiones cerebrales derechas se asocian con un aumento del tono simpático.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

1. Damasio A, Carvalho GB. The nature of feelings: Evolutionary and neurobiological origins. Nat Rev Neurosci. 2013 [citado: 05/03/2017];14(2):143-52. Disponible en: https://www.researchgate.net/profile/Gil_Carvalho/publication/234161523_OPINION_The_nature_of_feelings_evolutionary_and_neurobiological_origins/links/569581c508ae820ff074c699/OPINION-The-nature-of-feelings-evolutionary-and-neurobiological-origins.pdf

2. Kardon R. Anatomy and Physiology of the Autonomic Nervous System. Res Vestib Sci. 2017 [citado: 05/09/2018];16(4):101-7. Disponible en: https://collections.lib.utah.edu/details?id=190047

3. Struhal W, Javor A, Brunner C, Benesch T, Schmidt V, Vosko MR, et al. The phoenix from the ashes: Cardiovascular autonomic dysfunction in behavioral variant of frontotemporal dementia. J Alzheimers Dis. 2014 [citado: 05/03/2017];42(3):1041-6. Disponible en: https://www.doi:10.3233/JAD-140531

4. Zou R, Shi W, Tao J, Li H, Lin X, Yang S, et al. Neurocardiology: Cardiovascular changes and specific brain region infarcts. Biomed Res Int. 2017 Jul 3 [citado: 05/09/2018];2017(6):1-7. Disponible en: https://pdfs.semanticscholar.org/6159/777af4a72ec6840ffd69a22af3fb6978db90.pdf

5. Al-Qudah ZA, Yacoub HA, Souayah N. Disorders of the autonomic nervous system after hemispheric cerebrovascular disorders: an update. J Vasc Interv Neurol. 2015 Oct [citado: 05/09/2018];8(4):43-52. Disponible en: https://pdfs.semanticscholar.org

/311e/51abd98c4c36516b6120e43a665f8a3dff84.pdf

6. Basantsova NY, Tibekina LM, Shishkin AN. A role of the autonomic nervous system in cerebro-cardiac disorders. Zh Nevrol Psikhiatr Im S S Korsakova. 2017 [citado: 06/03/2018];117(11):153-60. Disponible en: https://www.mediasphera.ru/issues/zhurnal-nevrologii-i-psikhiatrii-im-s-s-korsakova/2017/11/downloads/ru/1199772982017111153

7. Chen Z, Venkat P, Seyfried D, Chopp M1, Yan T, Chen J. Brain-Heart interaction: Cardiac complications after stroke. Circ Res. 2017 Aug 4 [citado: 22/11/2018];121(4):451-68. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5553569/pdf/nihms889287.pdf

8. Macefield VG, Henderson LA. "Real-time" imaging of cortical and subcortical sites of cardiovascular control: concurrent recordings of sympathetic nerve activity and fMRI in awake subjects. J Neurophysiol. 2016 Sep 1 [citado: 03/05/2018];116(3):1199-207. Disponible en: https://europepmc.org/articles/pmc5018056

9. Ghchime R, Benjelloun H, Kiai H, Belaidi H, Lahjouji F, Ouazzani R. Cerebral hemispheric lateralization associated with hippocampal sclerosis may affect interictal cardiovascular autonomic functions in temporal lobe epilepsy. Epilepsy Res Treat. 2016 [citado: 03/05/2018];2016:741-54. Disponible en: https://pdfs.semanticscholar.org/5f3a/2afb420de8a44066234d8b5c4faa32279532.pdf

10. Guo CC, Sturm VE, Zhou J, Gennatas ED, Trujillo AJ, Hua AY et al. Dominant hemisphere lateralization of cortical parasympathetic control as revealed by frontotemporal dementia. Proc Natl Acad Sci U S A. 2016 Apr 26 [citado: 03/05/2018];113(17):2430-9. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4855566/pdf/pnas.201509184.pdf

11. De Morree HM, Rutten GJ, Szabó BM, Sitskoorn MM, Kop WJ. Effects of insula resection on autonomic nervous system activity. J Neurosurg Anesthesiol. 2016 Abr [citado: 03/05/2018];28(2):153-8. Disponible en: https://doi.org/10.1097/ANA.0000000000000207

12. Shoemaker JK, Goswami R. Forebrain neurocircuitry associated with human reflex cardiovascular control. Front Physiol. 2015 [citado: 22/11/2018];6:240. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4555962/pdf/fphys-06-00240.pdf

13. Zygmunt A, Stanczyk J. Methods of evaluation of autonomic nervous system function. Arch Med Sci. 2010 Mar 1 [citado: 08/06/2017];6(1):11-8. Disponible en: https://www.researchgate.net/profile/Agnieszka_Zygmunt/publication/221867868_Methods_of_evaluation_of_autonomic_nervous_system_function/links/56878d2608ae051f9af57413.pdf

14. Peçanha T, Silva-Júnior ND, Forjaz CL. Heart rate recovery: autonomic determinants, methods of assessment and association with mortality and cardiovascular diseases. Clin Physiol Funct Imaging. 2014 Sep [citado: 08/06/2017];34(5):327-39. Disponible en: https://www.10.1111/cpf.12102

15. Reyes del Paso GA, Langewitz W, Mulder LJ, van Roon A, Duschek S. The utility of low frequency heart rate variability as an index of sympathetic cardiac tone: a review with emphasis on a reanalysis of previous studies. Psychophysiology. 2013 May [citado: 08/06/2017];50(5):477-87. Disponible en: https://forum.quantifiedself.com/uploads/default/original/2X/b/b9527e2951cb4f6a6db7828b99097428c230c364.pdf

16. Sörös P, Hachinski V. Wounded brain, ailing heart: Central autonomic network disruption in acute stroke. Ann Neurol. 2017 Apr [citado: 15/02/2019];81(4):495-7. Disponible en: https://doi.org/10.1002/ana.24911

17. Xiong L, Leung HH, Chen XY, Han JH, Leung TW, Soo YO, et al. Comprehensive assessment for autonomic dysfunction in different phases after ischemic stroke. Int J Stroke. 2013 Dec [citado: 08/06/2017];8(8):645-51. Disponible en: https://s3.amazonaws.com/academia.edu.documents/413781 14/Comprehensive_assessment_for_autonomic_d20160121-5152-difizh.pdf?AWSAccessKeyId=AKI AIWOWYYGZ2Y53UL3A&Expires=1558556271&Signature=OHrJSOSwET8alrqyWKm8P ish0y4% 3D&response-content-disposition=inline%3B%20filename%3DComprehensive_assessment_for_ autonomic_d.pdf

18. Constantinescu V, Matei D, Costache V, Cuciureanu D, Arsenescu-Georgescu C. Linear and nonlinear parameters of heart rate variability in ischemic stroke patients. Neurol Neurochir Pol [Internet]. 2018 [citado: 05/09/2018];52(2):194-206. Disponible en: https://journals.viamedica.pl/neurologia_neurochirurgia_polska/article/download/61333/46529

19. Zhang W, Cadilhac DA, Churilov L, Donnan GA, O'Callaghan C, Dewey HM. Does abnormal circadian blood pressure pattern really matter in patients with transient ischemic attack or minor stroke? Stroke. 2014 Mar [citado: 09/07/2018];45(3):865-7. Disponible en: https://www.ahajournals.org/doi/full/10.1161/STROKEAHA.113.004058

20. Xu YH, Wang XD, Yang JJ, Zhou L, Pan YC. Changes of deceleration and acceleration capacity of heart rate in patients with acute hemispheric ischemic stroke. Clin Interv Aging. 2016 Mar 11 [citado: 09/07/2018];11:293-8. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4795583/

21. Chen CF, Lin HF, Lin RT, Yang YH, Lai CL. Relationship between ischemic stroke location and autonomic cardiac function. J Clin Neurosci. 2013 [citado: 09/07/2018];20:406-9. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/23219823

22. Xiong L, Leung HW, Chen XY, Leung WH, Soo OY, Wong KS. Autonomic dysfunction in different subtypes of post-acute ischemic stroke. J Neurol Sci. 2014 Feb [citado: 09/07/2018];15;337(1-2):141-6. Disponible en: https://www.10.1016/j.jns.2013.11.036

23. Rokita AG, Anderson ME. New therapeutic targets in cardiology: arrhythmias and Ca2+/calmodulin-dependent kinase II (CaMKII). Circulation. 2012 [citado: 09/07/2018];126:2125-39. Disponible en: https://www.10.1161/CIRCULATIONAHA.112.124990

24. Shirokova N, Kang C, Fernandez-Tenorio M, Wang W, Wang Q, Wehrens XH, et al. Oxidative stress and Ca(2+) release events in mouse cardiomyocytes. Biophys J. 2014 [citado: 09/07/2018];107:2815-27. Disponible en: https://www.10.1016/j.bpj.2014.10.054

25. Habecker BA, Anderson ME, Birren SJ, Fukuda K, Herring N, Hoover DB, et al. Molecular and cellular neurocardiology: development, and cellular and molecular adaptations to heart disease. J Physiol. 2016 [citado: 09/07/2018];594:3853-75. Disponible en: https://www.10.1113/JP271840

26. Heath BM, Xia J, Dong E, An RH, Brooks A, Liang C, et al. Overexpression of nerve growth factor in the heart alters ion channel activity and beta-adrenergic signalling in an adult transgenic mouse. J Physiol. 1998 [citado: 09/07/2018];512(3):779–91. Disponible en: https://doi.org/10.1111/j.1469-7793.1998.779bd.x

27. Akil E, Tamam Y, Akil MA, Kaplan İ, Bilik MZ, Acar A, et al. Identifying autonomic nervous system dysfunction in acute cerebrovascular attack by assessments of heart rate variability and catecholamine levels. Neurosci Rural Pract. 2015 Apr-Jun [citado: 06/03/2018];6(2):145-50. Disponible en: https://www.10.4103/0976-3147.153216

28. Oppenheimer S. Cerebrogenic cardiopathy. Blood Heart Circ. 2017 [citado: 05/09/2018];1(2):1-11. Disponible en: https://pdfs.semanticscholar.org/25e0/175bec8c3c381de51b9d2f98658060339482.pdf

29. Bodapati RK, Kizer JR, Kop WJ, Kamel H, Stein PK. Addition of 24-Hour Heart Rate Variability Parameters to the Cardiovascular Health Study Stroke Risk Score and Prediction of Incident Stroke: The Cardiovascular Health Study. JACC Heart Fail. 2017 Jun [citado: 09/07/2018];5(6):423-31. Disponible en: https://www.10.1016/j.jchf.2016.12.015

30. Pereira VL, Dobre M, dos Santos SG, Fuzatti JS, Oliveira CR, Campos LA. Association between carotid intima media thickness and heart rate variability in adults at increased cardiovascular risk. Front Physiol. 2017 [citado: 09/07/2018];8:248. Disponible en: https://www.10.3389/fphys.2017.00248

31. Yperzeele L, van Hooff RJ, Nagels G, De Smedt A, De Keyser J, Brouns R. Heart rate variability and baroreceptor sensitivity in acute stroke: a systematic review. Int J Stroke. 2015 Aug [citado: 09/07/2018];10(6):796-800. Disponible en: https://www.10.1111/ijs.12573

32. Seifert F, Kallmünzer B, Gutjahr I, Breuer L, Winder K, Kaschka I, et al. Neuroanatomical correlates of severe cardiac arrhythmias in acute ischemic stroke. J Neurol. 2015 May 1 [citado: 05/09/2018];262(5):1182-90. Disponible en: https://link.springer.com/content/pdf/10.1007%2Fs00415-015-7684-9.pdf

33. Pasquini M, Laurent C, Kroumova M, Masse I, Deplanque D, Leclerc X, et al. Insular infarcts and electrocardiographic changes at admission: Results of the Prognostic of Insular Cerebral Infarcts Study (PRINCESS). J Neurol. 2006 [citado: 09/07/2018];253(5):618-24. Disponible en: https://www.10.1007/s00415-006-0070-x

34. Mochmann HC, Scheitz JF, Petzold GC, Haeusler KG, Audebert HJ, Laufs U, et al. TRELAS Study Group. Coronary Angiographic Findings in Acute Ischemic Stroke Patients with Elevated Cardiac Troponin: The Troponin Elevation in Acute Ischemic Stroke (TRELAS) Study. Circulation. 2016 [citado: 22/11/2018];133:1264-71. Disponible en: https://www.10.1161/CIRCULATIONAHA.115.018547

35. Choi HA, Jeon SB, Samuel S, Allison T, Lee K. Paroxysmal Sympathetic Hyperactivity After Acute Brain Injury. Curr Neurol Neurosci Rep. 2013 [citado: 22/11/2018];13(8):370. Disponible en: https://www.10.1007/s11910-013-0370-3

36. Porto I, Della Bona R, Leo A, Proietti R, Pieroni M, Caltagirone C, et al. Stress cardiomyopathy (tako-tsubo) triggered by nervous system diseases: A systematic review of the reported cases. Int J Cardiol [Internet]. 2013 [citado: 22/11/2018];167(6):2441-8. Disponible en: http://dx.doi.org/10.1016/j.ijcard.2013.01.031

37. Oppenheimer S, Cechetto D. The insular cortex and the regulation of cardiac function. Comprehensive Physiology. 2016 [citado: 09/07/2018];6(2):1081-133. Disponible en: https://doi.org/10.1002/cphy.c140076

38. Tahsili-Fahadan P, Geocadin RG. Heart-brain axis: effects of neurologic injury on cardiovascular function. Circulation research. 2017 Feb 3 [citado: 05/09/2018];120(3):559-72. Disponible en: https://www.ahajournals.org/doi/pdf/10.1161/CIRCRESAHA.116.308446

39. Oppenheimer SM, Cechetto DF. Cardiac chronotropic organization of the rat insular cortex. Brain Res. 1990 [citado: 05/09/2018];533:66-72. Disponible en: https://doi.org/10.1016/0006-8993(90)91796-J

40. Strittmatter M, Meyer S, Fischer C, Georg T, Schmitz B. Location-dependent patterns in cardio-autonomic dysfunction in ischaemic stroke. Eur Neurol. 2003 [citado: 03/05/2018];50(1):30-8. Disponible en: https://doi.org/10.1159/000070856

41. Colivicchi F, Bassi A, Santini M, Caltagirone C. Cardiac autonomic derangement and arrhythmias in right-sided stroke with insular involvement. Stroke. 2004 [citado: 09/07/2018];35:2094-8. Disponible en: https://doi.org/10.1161/01.STR.0000138452.81003.4c

42. Ay H, Koroshetz WJ, Benner T, Vangel MG, Melinosky C, Arsava EM, et al. Neuroanatomic correlates of stroke-related myocardial injury. Neurology. 2006 May [citado: 05/09/2018];66(9):1325-1329. Disponible en: https://www.10.1212/01.wnl.0000206077.13705.6d

43. Christensen H, Boysen G, Christensen AF, Johannesen HH. Insular lesions, ECG abnormalities, and in outcome in acute stroke. J Neurol Neurosurg Psychiatry. 2005 [citado: 09/0/7/2018];76(2):269-71. Disponible en: https://www.10.1136/jnnp.2004.037531

44. Constantinescu V, Matei D, Cuciureanu D, Corciova C, Ignat B, Popescu CD. Cortical modulation of cardiac autonomic activity in ischemic stroke patients. Acta Neurol Belg. 2016 Dec [citado: 09/07/2018];116(4):473-80. Disponible en: https://www.10.1007/s13760-016-0640-3

45. Sykora M, Diedler J, Turcani P, Hacke W, Steiner T. Baroreflex: a new therapeutic target in human stroke? Stroke. 2009 [citado: 09/07/2018];40:678-82. Disponible en: https://doi.org/10.1161/STROKEAHA.109.565838

46. Krause T, Werner K, Fiebach JB, Villringer K, Piper SK, Haeusler KG, et al. Stroke in right dorsal anterior insular cortex Is related to myocardial injury. Ann Neurol. 2017 Apr [citado: 12/02/2019];81(4):502-11. Disponible en: https://doi.org/10.1002/ana.24906

47. Kitamura J, Ueno H, Nagai M, Hosomi N, Honjo K, Nakamori M, et al. Blood Pressure Variability in Acute Ischemic Stroke: Influence of Infarct Location in the Insular Cortex. Eur Neurol. 2018 [citado: 12/02/2019];79(1-2):90-9. Disponible en: https://doi.org/10.1159/000486306

48. Haeusler KG, Grittner U, Fiebach JB, Endres M, Krause T, Nolte CH. Heart and Brain interfaces in Acute ischemic Stroke (HEBRAS)--rationale and design of a prospective observational cohort study. BMC Neurol. 2015 Oct 22 [citado: 12/02/2019];15:213. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618534/pdf/12883_2015_Article_458.pdf

49. Billman GE. The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Frontiers in physiology; 2013 Feb 20 [citado: 13/04/2019];4:26. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3576706/pdf/fphys-04-00026.pdf

50. Cohen M, Taylor JA. Short-term cardiovascular oscillations in man: measuring and modeling the physiologies. J Physiol. 2002 Aug 1 [citado: 13/04/2019];542(3):669-83. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2290446/pdf/tjp0542-0669.pdf

51. Houle MS, Billman GE. Low-frequency component of the heart rate variability spectrum: a poor marker of sympathetic activity. Am J Physiol; 1999 Jan [citado: 13/04/2019];276(1):H215-23. Disponible en: https://www.physiology.org/doi/pdf/10.1152/ajpheart.1999.276.1.H215

52. Eckberg DL, Mohanty SK., Raczkowska M. Trigeminal-baroreceptor reflex interactions modulate human cardiac vagal efferent activity. J Physiol (Lond). 1984 Feb [citado: 13/04/2019];347:75-83. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1199435/pdf/jphysiol00644-0086.pdf

53. Van De Borne P, Montano N, Narkiewicz K, Deguate JP, Mallani A, Pagani M, et al. Importance of ventilation in modulating interactions between sympathetic drive and cardiovascular variability. Am J Physiol Heart Circ Physiol. 2001 Feb [citado: 13/04/2019];280(2):H722-9. Disponible en: https://www.physiology.org/doi/pdf/10.1152/ajpheart.2001.280.2.H722

54. Bainbridge FA. The relation between respiration and the pulse-rate. J Physiol (Lond). 1920 Aug 23 [citado: 13/04/2019];54(3):192-202. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1405736/pdf/jphysiol01747-0064.pdf

Publicado

2019-09-07

Cómo citar

1.
Guevara Rodríguez M. Hipótesis de lateralización a partir de la asociación entre la topografía del infarto cerebral y la disfunción autonómica cardiaca luego de un ictus isquémico. Rev Cubana Neurol Neurocir [Internet]. 7 de septiembre de 2019 [citado 13 de agosto de 2025];9(2). Disponible en: https://revneuro.sld.cu/index.php/neu/article/view/307

Número

Sección

Revisión